Anveshan: A Framework for Analysis of Multiple Annotators' Labeling Behavior
نویسندگان
چکیده
Manual annotation of natural language to capture linguistic information is essential for NLP tasks involving supervised machine learning of semantic knowledge. Judgements of meaning can be more or less subjective, in which case instead of a single correct label, the labels assigned might vary among annotators based on the annotators’ knowledge, age, gender, intuitions, background, and so on. We introduce a framework ”Anveshan,” where we investigate annotator behavior to find outliers, cluster annotators by behavior, and identify confusable labels. We also investigate the effectiveness of using trained annotators versus a larger number of untrained annotators on a word sense annotation task. The annotation data comes from a word sense disambiguation task for polysemous words, annotated by both trained annotators and untrained annotators from Amazon’s Mechanical turk. Our results show that Anveshan is effective in uncovering patterns in annotator behavior, and we also show that trained annotators are superior to a larger number of untrained annotators for this task.
منابع مشابه
A Probabilistic Framework to Learn from Multiple Annotators with Time-Varying Accuracy
This paper addresses the challenging problem of learning from multiple annotators whose labeling accuracy (reliability) differs and varies over time. We propose a framework based on Sequential Bayesian Estimation to learn the expected accuracy at each time step while simultaneously deciding which annotators to query for a label in an incremental learning framework. We develop a variant of the p...
متن کاملInferring truth from multiple annotators for social interaction analysis
This study focuses on incorporating knowledge from multiple annotators into a machine-learning framework for detecting psychological traits using multimodal data. We present a model that is designed to exploit the judgements of multiple annotators on a social trait labeling task. Our two-stage model first estimates a ground truth by modeling the annotators using both the annotations and annotat...
متن کاملLearning Medical Diagnosis Models from Multiple Experts
Building classification models from clinical data often requires labeling examples by human experts. However, it is difficult to obtain a perfect set of labels everyone agrees on because medical data are typically very complicated and it is quite common that different experts have different opinions on the same patient data. A solution that has been recently explored by the research community i...
متن کاملExploiting observers’ judgments for nonverbal group interaction analysis
Incorporating annotators’ knowledge into a machine-learning framework for detecting psychological traits using multimodal data is an open issue in human communication and social computing. We present a model that is designed to exploit the subjective judgements of multiple annotators on a social trait labeling task. Our two-stage model first estimates a ground truth by modeling the annotators u...
متن کاملLearning to Recognize Human Activities from Soft Labeled Data
An activity recognition system is a very important component for assistant robots, but training such a system usually requires a large and correctly labeled dataset. Most of the previous works only allow training data to have a single activity label per segment, which is overly restrictive because the labels are not always certain. It is, therefore, desirable to allow multiple labels for ambigu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010